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A consequence of the notional existence  
of an effectively calculable yet non-recursive function*

Introduction

Alonzo Church (1905–1993) is the author of a certain hypothesis, first for-
mulated in 1934 in connection with his research on lambda-calculus, and 
officially submitted to the AMS at its meeting on 22.03.1935 and first published 
(in terms of recursive functions) in an abstract in: Bulletin of the American 
Mathematical Society, vol. 41(1935) p. 332–333. The second version was pub-
lished by Church in his article “An unsolvable problem of elementary number 
theory”, which in his terms states as follows:

We now define the notion, already discussed, of an effectively calculable func-
tion of positive integers by identifying it with the notion of a recursive function 
of positive integers (or of a λ–definable function of positive integers).1

Church’s student, S.C. Kleene reformulated it into a predicate form and 
coined it Church’s Thesis (CT). Here is his formulation (Kleene 1952, 300):

 * Some parts of this article were written in collaboration with Jerzy Mycka, UMCS
1 The American Journal of Mathematics, 58(1936), pp. 345–363; [Davis’ anthology pp. 89–107].
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Thesis I. Every effectively calculable function (effectively decidable predicate) 
is general recursive.

Church’s thesis has kept many researchers up at night since then for some 
reasons. The main reason is that still for so many years, the logical value of the 
thesis has not been established. Secondly, it is otherwise known that a large part 
of computability theory is built using the thesis. We are not exaggerating when 
we say that it is one of the pillars of computability theory. Since its inception, 
many distinguished minds have worked on it, but the results are only partial. 
On this occasion a great deal of conceptual work has been done which has 
resulted, among other things, in the following findings.

Regarding the status of Church’s thesis, the taxonomy of its formulations 
can be given:

• CT as an axiom or theorem (G. Kreisel, E. Mendelson. R. Gandy):
• CT as a definition (A. Church., K. Gödel);
• CT as a (empirical) working hypothesis (E. Post, J. Pepis);
• CT as a law of nature or a law of mind (E. Post);
• CT as an explication.2

Assume for the sake of further discussion that CT, as an expression of some 
language, has a structure that can be written in general:

(Schema of CT) (I = S):

where the variable I denotes an intuitive concept and the variable S a strict 
concept, while the equality sign should be understood as ambiguous, de-
pending on the interpretation of CT. Following these observations, to the best 
of our knowledge, there are three main types of CT, which differ in  the 
strength of the equality relation from the CT Schema. The strongest type 
of CT we have when ‘=’ is understood as the sameness of two concepts taken 
by Church as definiendum and definiens (CT1).3 Weaker types of thesis arise 
when ‘=’ means the equivalence of both concepts (CT2); and such a type when 

2 Cf. the paper “The Status of Church’s Thesis” by Woleński and Murawski in: (Olszewski, 
Woleński, and Janusz 2006, 310–30).

3 Church conceived CT, at least at one time, as a definition. The question of ’sameness’ 
of concepts is a complicated matter and was considered in the paper (Olszewski 2009), sections 
5.1.4 and 5.1.5. Yet the properties of the sameness of concepts are still unknown and we have to wait 
for scientists, probably cognitive scientists, to tell us what it means.
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‘=’ means the identities of extensions of concepts (CT3). There are relations 
between them such that from CT1 follows CT2, and from CT2 follows CT3, 
i.e. CT3 is a necessary condition for the other types of the thesis.

(CT1) the identity of the concepts;
(CT2) the equivalence of the concepts;
(CT3) the sameness (identity) of extensions of the concepts.

Following G. Kreisel, we distinguish three versions of CT arising by repla-
cing I in the general structure of CT by: the intuitive notion of an effectively 
computable function (E), the notion of a function computable by a physical 
process (P), and the notion of a mechanically computable function (M), and the 
right-hand side of the formal S, by the notion of recursiveness. Thus we have 
three versions:

(CT-H) human version (E = R);
(CT-P) physical version (P = R);
(CT-M) mechanical version (M = R).

On the other hand, CT variants are those formulations in which we replace 
the right-hand side of the identity by another term in any of the versions. For 
example, when we replace R by the notion of a function computable by a Tu-
ring machine (T), we get a human version variant in the form (E = T), and this 
is Turing’s thesis, a variant of the first version, i.e. CT-H. This can be done for 
any formal computability model, for any version of CT, so there can be many 
such variants.4

Pepis on Church’s Thesis
One of the proponents, of considering CT as an empirical working hypothesis, 
was the Polish logician and mathematician – Józef Pepis (1910–1941), a mem-
ber of the Lviv-Warsaw School of Mathematics. In his doctoral thesis: On the 
issue of decidability in terms of the narrower functional calculus5, he dealt with 

4 Note that CT is called by some, but quite often, the Church-Turing thesis. The above 
discussion clarifies how this issue is rearranged.

5 Polish original: O zagadnieniu rozstrzygalności w zakresie węższego rachunku funkcyjnego; 
Archiwum Towarzystwa Naukowego we Lwowie: 7(8) (1937).
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issues of computability and Church’s thesis itself. In his dissertation, he wrote 
about CT:

In regards to this hypothesis, the above mentioned authors (Church and Turing; 
added by A.O.) do not provide any convincing arguments in its support but they 
rely only on an empirical fact (emphasis by A.O.) that there are no known “cal-
culable” functions except for those that are recursive. Due to such state of affairs, 
the question of the complete solubility of the problem of decidability for the 
system of the narrower functional calculus remains open (emphasis by A.O.).6

This sentence expressing doubt indicates that Pepis had a somewhat different 
position than Church on the understanding of CT, and even intended to con-
struct an effectively computable, though non-recursive, function. His position 
was similar to Post’s, which Church in turn criticized in his review of Post’s 
article, submitted to the Journal of Symbolic Logic in October 1936. A letter 
is preserved which is Church’s reply to Pepis’ letter, which also concerned CT, 
and an excerpt of which we cite:

I would say at the present time, however, that I have the impression that you 
do not fully appreciate the consequences which would follow from the construc-
tion of an effectively calculable non-recursive function.
Therefore to discover a function which was effectively calculable but not general 
recursive would imply discovery of an utterly new principle of logic, not only 
never before formulated, but never before actually used in a mathematical proof – 
since all extant mathematics is formalisable within the system of Principia, or at 
least within one of its known extensions. Moreover this new principle of logic 
must be of so strange, and presumably complicated, a kind that its metamathe-
matical expression as a rule of inference was not general recursive (for this reason, 
if such a proposal of a new principle of logic were ever actually made, I should 
be inclined to scrutinize the alleged effective applicability of the principle with 
considerable care). (Sieg 1997, 175–76)7

6 The reviewers of his doctoral dissertation were: Prof. Dr. St. Banach, and Prof. Dr. L. Chwistek. 
Prof. E. Żyliński, a mathematician and logician, was the supervisor of Pepis’s doctoral dissertation. 
Cf. [Maligranda and Prytula, 2013, pp. 38–41].

7 Church’s letter to Pepis bears the date of June 8, 1937, and in it Church refers to the manuscript 
of Pepis’ article sent to him: “Ein Verfahren der mathematischen Logik”. As a humorous curiosity 
one can cite the fact that Church addresses Pepis per: “Dear Mgr. [Monsignore] Pepis”. Presumably 
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In the second part of it, Church is talking about an entirely new logical prin-
ciple, implied by the construction of effectively calculable and non-recursive 
function.8 This new principle of logic, would have such features:

A. it would be unknown to previous mathematics, which is formalizable;9

B. it would be complicated and strange;
C. it would be metamathematically expressible;
D. it would be presented as a rule of inference.
The purpose of the remainder of this article (beginning with heading 1. Arith-

metic), which is somewhat more technical in nature, will be to argue for the 
validity of Church’s conjecture in the aforementioned case. In other words, 
it will be proposed a specific sense in which such a function is given and exists, 
and then in what sense it confirms the conjectures C., and D., while A., and 
B., to some limited extent.

A little methodology
It should be noted that the entire argument of this paper can be understood 
as a thought experiment, which is always subject to some kind of arbitrariness.

From the methodological point of view, the structure of the argument falls 
under a schema of argumentum ad absurdum. This argument, following N. Re-
scher10 will be understand somewhat more loosely in the sense that the ad ab­
surdum does not mean a mere contradiction, but means either ad falsum or ad 
impossibile or even ad rudiculum. Besides, to argue for CT, we do not presup-
pose its negation, but we assume an other sentence that implies the negation 
of CT. Let us emphasize that we want to argue for the truth of Church’s thesis. 
So, to do this we assume a hypothesis Hyp:

• (Hyp) There exists effectively computable yet non-recursive function.;
• Hyp ⇒ ¬CT;
• Hyp ⇒ F; (will be showed in the paper)

Pepis signed his letter with: “Mgr.” which in Polish is short for “Magister” which means “M.A.” 
Church did not know this, so he deciphered the unfamiliar abbreviation as “Monsignore”.

 8 In the letter there is also such a passage: “But it is proved in my paper in the American 
Journal of Mathematics that if the system of Principia Mathematica is omega-consistent, and if the 
numerical function f is not general recursive, then, whatever permissible choice is made of a formal 
definition of f within the system of Principia, there must exist a positive integer a such that for 
no positive integer b is the proposition f (a) = b  provable within the system of Principia.”(Sieg 1997,  
175–76).

 9 Formalizable in the frame of the Principia Mathematica system or its extension.
10 (Rescher 2022).
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• F satisfies the above features A.–D.;
• F is absurd (in Rescher’s extended sense).
As a  justification for this mode of argument, recall that a Jesuit priest, 

Giovanni Girolamo Saccheri (1667–1733), in his book Euclides ab omni nae­
vo vindicatus (1733), pointed out conclusions resulting from, so called, the 
hypothesis of the acute angle. Such a hypothesis has, with respect to Euclid’s 
fifth postulate, similar properties to our hypothesis Hyp with respect to CT, 
since, more precisely, it implies the negation of Euclid’s fifth postulate and 
bears additionally absurd consequences. His hypothesis states that the sum-
mit angles a Saccheri’s quadrilateral are acute, and this leads to the negation 
of Euclid’s fifth postulate and to some counter-intuitive (absurd) conlusions 
that turned out to be certain principles of hyperbolic geometry. An impor-
tant conclusion of recent article, with reference to the Italian Jesuit, is that 
it cannot be ruled out that an analogous situation could occur with our 
Hyp, as with Saccheri’s hypothesis, because Hyp can stay in a similar relation 
to  the current knowledge, as some theorems of hyperbolic geometry to the 
axioms of Euclidean geometry.

1. Arithmetic

Precise considerations of the foundations of mathematics are possible only 
after a  clear understanding of  the most basic concepts has been estab-
lished.11 In the context of the late nineteenth and early twentieth centuries 
research,12 the formulation of a formal theory was achieved, designed for 
the aim of  rigorously deriving possible theorems regarding the proper-
ties of natural numbers and of the relations and functions defined in their  
domain.

This theory, called (for historical reasons) Peano arithmetic, PA, can be char-
acterized as follows. The language of the arithmetic is based on the language 
of first-order predicate logic with equality; however, it will be extended with 
some non-logical symbols:

11 The reader well acquainted with Peano’s arithmetic and the basics of the theory of computability 
can jump directly to the heading number 4 of the paper.

12 In the history of arithmetic – a similar and imperfect approach was presented by Peano in his 
work “Arithmetices principia, Novo metodo exposita” (1889), while a fully mature and detailed 
version, almost in the modern version, was presented by D. Hilbert and P. Bernays in their work 

“Grundlagen der Mathematik” (1934).
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• constant 0;
• unary function symbol S;
• binary function symbols +, ·.
The understanding of these symbols will be consistent with their intuitive 

meaning assumed in arithmetic calculations. The first type of complex PA ex-
pression is a term, which is the representation of natural numbers given directly 
or as results of arithmetic operations. Hence a term is defined inductively 
as either an individual variable, a constant 0, or a simpler term preceded by the 
symbol S or two terms connected by the symbols + or ·.

Now we can introduce the definition of formulas, i.e. the representation 
of statements about the properties of arithmetic expressions. The simplest 
formula is constructed as a combination of two terms by the equality sign; 
on the basis of such basic formulas complex formulas can be built by using 
logical functors (negation, conjunction, alternative, implication, equivalence) 
and quantifiers (limited and unlimited). A formula in which there are no var-
iables outside of the range of the quantifier is called a sentence formula – its 
interpretation does not depend on the possible settings occurring within 
it variables.

In order to find theorems of PA theory, we need to define formulas that are 
the basis of reasoning (axioms), and methods of deriving conclusions from 
premises. In this way it will be possible, starting from the axioms, to construct 
a set of theorems by attaching further formulas to it.

The axioms of Peano arithmetic is a set of the following formulas describing 
the role of function symbols (variables x, y, z may be replaced by any term 
of the PA language):

• S (x) = S (y) → x = y,
• ¬ (S (x) = 0),
• x + 0 = x,
• x + S (y) = S (x + y),
• x · 0 = 0,
• x · S (y) = x · y + x,

supplemented by an important axiomatic scheme of induction13 (φ can be re-
placed by any formula of PA language with one free variable, i.e., not being 
within the scope of any quantifier):

• φ (0) ∧∀x [φ (x) → φ (S (x))] → ∀xφ (x),

13 An axiomatic scheme acts as a pattern for an infinite sequence of formulas, which is determined 
by replacing some component of the pattern by all possible expressions of a certain type.
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and by  equality axioms adapted to  the original function symbols of  PA 
arithmetic:

• x = x,
• x = y → y = x,
• x = y ∧ y = z → x = z,
• x = y → S (x) = S (y),
• x = y → z + x = z + y,
• x = y → x + z = y + z,
• x = y → x · z = y · z,
• x = y → z · x = z · y.
The above axioms define the basis of the properties of the functions set as the 

original components of the system: the successor, addition, and multiplication. 
These properties simultaneously guarantee a certain structure preserved by any 
model of PA theory.

What is still needed in order to develop a complete theory, is a logical ap-
paratus allowing to derive theorems from the above set of axioms. The logical 
functors of negation, conjunction, alternative, implication, and equivalence 
satisfy the standard dependencies. The rules of inference may be defined 
in any way that ensures the possibility of proving all true formulas of the 
classical first order predicate calculus (for example, according to Hilbert’s 
construction the rules may be restricted to modus ponens and the general-
ization principle, when extending the set of axioms by appropriate logical 
axioms).

In this way we obtain a complete designation of the theorems of Peano 
arithmetic – it is a set of formulas which can be derived using the appropriate 
(briefly characterized above) logical apparatus, beginning from the axioms 
of PA. The fact that a certain formula φ is a theorem of the theory PA will 
be written PA− φ.

Within the consideration of  formal theories, the property of consisten-
cy of a theory plays an important role. It can be expressed as the condition 
that for any sentence formula χ the theory cannot simultaneously prove χ 
and ¬χ. A theory which does not satisfy this condition (a consistent theory) 
is not deductively interesting in the sense that its theorems will be all possible 
sentence formulas.

It now remains to be decided what kind of relations and functions can 
be described by the apparatus of Peano arithmetic. The technical means for 
expressing this relationship are the notions of representability and strong 
representability. A preliminary step is to assume that every natural number x  
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will be represented by an expression of the form S…S 0 (x-th successor of 0), 
 
which we will denote by x−; of course, zero remains represented by the constant 0.

We say that the formula φ of PA with n free variables strongly represents the 
relation R ⊂ ℕn if and only if for every x1,…,xn ∈ ℕ the following conditions 
hold:

• if R (x1, …, xn) then PA− φ (x−1,…, x−n)
and
• if ¬R (x1, …, xn) then PA− ¬φ (x−1,…, x−n).
In turn, we say that the formula φ of  (n + 1) free variables represents 

the function f : ℕn → ℕ if and only if for each x1,…, xn ∈ ℕ it is true that  
PA − (∀y) [φ (x−1,…, x−n, y) ↔ y = f (x1, …, xn)}].

The important relationship between the representation of functions and 
relations is described by a theorem that says that a relation R ⊂ ℕn is strongly 
representable in PA if and only if the characteristic function of that relation 
is representable in PA.

A formal language can be associated with a structure M: a certain set M and 
a set of constants (belonging to the set M), functions (with arguments and 
results in M) and, if necessary, relations. Particular elements of the structure 
must be matched to the language: for every constant symbol there is a corre-
sponding constant of the structure; for every function symbol, a function in the 
structure; for every relation symbol, a relation from the structure. On the basis 
of natural conditions (defined by Tarski14), the notion of the truth of a formula 
of a language in the structure can be introduced. The truth of a formula φ 
in the structure M is denoted by M = φ. A structure which makes every for-
mula of a certain set of formulas Φ true is called the model of the set Φ. Kurt 
Gödel proved15, that every formula that is true in every model of first-order 
logic has a proof. The aforementioned theorem can be expressed by appealing 
to somewhat broader notions. We say that a formula φ is a semantic conse-
quence of a theory T (considered as a certain subset of formulas of a fixed 
language) if and only if φ is true in every model of the theory T, we denote 
such a relation by the symbol T = φ. Then the completeness theorem can 

14 Cf. any monograph on model theory.
15 Gödel, strictly speaking, proved the theorem of the existence of a denumerable model, for 

any consistent set of sentence formulas of a first-order language. The completeness theorem for 
first-order logic easily follows from it (cf. Gödel 1930).

x
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be stated as the statement that if there is T = φ then a proof can be found φ 
in the theory T: T − φ.

Of course, we can take Peano arithmetic PA as the theory, in which case 
we obtain the following theorem as a conclusion.

Theorem 1. Every formula  which is true in any PA model also has a proof within 
the first­order predicate logic, when additional assumptions from the set of PA 
axioms are admitted.

In what follows below, we will sometimes use certain models of the set of PA 
theorems. Among them the standard model N consisting of the set of natural 
numbers ℕ and the usual successor, addition, and multiplication functions, 
plays a unique role.

2. Computability

As it turns out, to analyse the deductive capabilities of PA arithmetic, it is 
necessary to appeal to the formalized computability theory. We will therefore 
begin this section with a brief analysis introducing the essence of computa-
bility models.

A preliminary step in considering computable processes is establishing the 
conditions that allow to define certain problem-solving methods as algorith-
mic methods. As it turns out, in proposing various computation models based 
on the idea of processing in discrete steps, usually fairly uniform assumptions 
about the possibilities of constructing realistic computing devices were made.

Let us begin by presenting the analysis of the conditions of computability 
given by Alan Turing himself (cf. Turing 1937). The fundamental assumption 
is that conducted calculations must be based on the use of only a finite number 
of symbols, which are divided into groups of unambiguously distinguishable 
characters.

Furthermore, an analysis of various aspects of natural human computational 
activity leads to the following conditions:

• calculations are stored on a spatial medium divided into certain units – 
elementary cells;

• the number of symbols which can be entered into a single cell is limited 
by a fixed constant;

• the decision to modify the data is based on the observation of a finite and 
uniformly limited number of cells;
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• a modification consists in changing the content of one of the cells;
• moving the attention to the next group of cells requires traveling only 

a finite distance from the current cell;
• in deciding whether to modify the data, some overall state of the struc-

ture may also be considered; the number of such different states for any 
particular algorithm must have an upper limit.

Without loss of generality, the constraints on the number of cells in the con-
sidered groups, the number of symbols in the cells, and the distance covered 
in changing the observed cells can be reduced to unity. This may cause some 
complication in the description of the computation, but it does not affect the 
solvability of problems.

The above conditions were clearly specified by the image of working on a pa-
per tape with a pencil and an eraser. Alan Turing considered the conditions 
of efficient computation by describing a certain theoretical model of a mechan-
ical calculator. This device can be described as follows: a machine consisting 
of an infinite tape, divided into identical cells, used to store input, output, 
and working information. All elements on the tape are inscriptions (strings 
of characters), with the rule of placing one character per cell in place. With-
out loss of generality, a certain alphabet is usually chosen as a character pool 
for inscriptions. In practice, the preference is often for a binary (zero-one) 
alphabet, which allows for a relatively convenient and concise representation 
of data. In addition, the design of the machine requires the definition of a finite 
set of states from which the element indicating the current situation (state) 
of the machine is derived. The transformation of the machine configuration 
is performed on the basis of a set of instructions which, on the basis of the 
state and symbol (contained in the currently observed cell), indicate the new 
state and the symbol with which the existing ones should be replaced, and 
decide the transfer of attention to one of the neighbouring cells.

Of course, this is not the only model that can be developed when considering 
the specifics of effective computation processes. However, having a description 
of such a model is an important basis for developing a general understand-
ing of the essence of computable processes. From arithmetic’s point of view, 
it would be advisable to propose a model of computability equal in its power 
to a Turing machine, but defined in terms of numerical functions. Since we do 
not admit information of infinite nature, the set of natural numbers becomes 
the numerical set sufficient for presenting the finite information resources.

In this context, we should note a special class of functions called the class 
of partial recursive functions PREC.
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We say that a function with arguments and value in the set of natural num-
bers ℕ is a partial recursive function (belongs to the PREC class) if and only if it:

• is one of  the basic functions: Z (x) = 0; S (x) = x + 1; I i
n (x1,…, xn) =  

xi, n ∈ ℕ, 1 ≤ i ≥ n;
• is obtained as a composition of PREC class functions: if f : ℕn → ℕ, gi :  

ℕk → ℕ, i = 1,…, n belong to PREC, then the newly defined function  
h (x1,… xk) = f (g1 (x1,… xk),… gn (x1,… xk)) also belongs to PREC;

• is obtained by a simple recursion operation applied to PREC functions: if   
f : ℕn+2 → ℕ, g : ℕn → ℕ belong to PREC, then the function h : ℕn+1 → ℕ,  
defined as follows:

• h (x1,… xn, 0) = g (x1,… xn)
• h (x1,… xn, S (xn+1)) = f (h (x1,… xn, xn+1), x1,… xn+1)

also belongs to PREC;
• is obtained by applying minimisation operation to a PREC function:  

if f : ℕn+1 → ℕ belongs to PREC, then h : ℕn → ℕ defined as follows:
• h (x1,… xn) = y if and only if

• f (x1,… xn, y) = 0 and
• for each z < y the function f (x1,… xn, z) is defined with such 

a value that f (x1,… xn, z) ≠ 0
also belongs to PREC.

As can be seen, a function is partially recursive if it can be defined from sim-
ple basis functions, using operations that preserve the property of effective 
computability. In the definition three such operations are used:

• composition – after calculating the value of one function, its result be-
comes an argument for the calculation of another function; we are dealing 
here with the description of the sequentiality of calculations;

• simple recursion – we employ a function repeatedly, using as its argument 
in successive repetitions the previously determined value of the calcu-
lation of the same function (with a given initial argument); in this way 
we get a description of a repetition (a loop) of a certain calculation, where 
the number of repetitions is given as an initial parameter;

• minimization – we search the arguments of the function, until we find the 
one which will be its zero; we have here the process of searching for the 
smallest value satisfying a certain condition; the duration of this process 
is not explicitly given at the beginning of the search.

The last one of these operations poses a new problem for the class of partial 
recursive functions PREC. The function to which the minimization operation 
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will be applied does not necessarily have a zero (even when it is a correctly 
defined computable function). Consequently, in some cases minimization 
will not be able to give a result, and the function defined by it will, for certain 
arguments, fall into infinite computation. Thus, we can divide the functions 
belonging to PREC into two groups:

• total functions – for each possible set of arguments they computational-
ly determine the values (the designation of this class of total recursive 
functions is REC);

• partial functions – they are undefined (do not finish the computation 
correctly) for some data sets, but for those arguments that belong to their 
domain they still computationally determine the values.

Note that partial recursive functions for arguments outside the domain do not 
produce some special non-numerical value indicating indeterminacy. In such 
a case computation usually becomes an infinite process, an observer of which 
has no way of detecting whether the computation will eventually conclude 
or remain active forever.

As it turns out, functions that can be computed by Turing machines (in the 
chosen representation of numbers as inscriptions) are always partial recursive 
functions. Moreover, any partial recursive function can be implemented to be 
computed by a Turing machine. The same equivalence of computability applies 
to a much wider set of models such as Post machines, Kolmogorov machines, 
and Church calculus16. Therefore, the results regarding partial recursive func-
tions gain special relevance as results that can be related to the intuitive notion 
of effective computability.

The notion of effective transformation (effective computation) was analysed 
by Hilbert, Gödel, Church, Post, and Kleene (Adams 2011). The work of Turing 
(Turing 1937), however, was an extremely important development, in which 
his analysis linking effectiveness to human computing activity proved crucial. 
In the context of the time, this step justified the correctness of the proposed 
computational models. Another aspect of his work is also worthy of note: 
by placing human activity in the foreground, Turing’s analysis leads in a sense 
to the conclusion that the notion of effective computation is open to modi-
fication and evolution, relative to the dynamic nature of human potential i.e. 
human mind.

16 For an overview of computational models cf. [Odifreddi (1989), (1989), pp. 31–86; Kolmogorov 
and Uspenskii (1958), (1958)].
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3. Relation of computation theory and PA arithmetic

The main result on representability of relations and functions in the theory 
of Peano arithmetic (PA) is a theorem that relates representability to comput-
ability. We will call relations recursive if their characteristic functions belong 
to the set of recursive functions.

Theorem 3.1. For each partial recursive function there corresponds a formula 
representing it in PA arithmetic.

For each recursive (decidable) relation there corresponds a formula strongly 
representing it in PA arithmetic. 

Using the apparatus of Peano arithmetic, it is possible to introduce new pred-
icates and function symbols that will retain their recursive property (com-
putability). An example of such a definition can be the “less than” predicate, 
defined as follows: x < y = (∃z ≤ y)[¬ (z = 0) ∧ x + z = y].

We will now use the connection between recursive functions and Peano 
arithmetic to point out facts of great significance in mathematics. The first 
problem will be obtaining the possibility of a precise mathematical and com-
putable description of the relations between formulas, their proofs, and the 
rules of inference used in the proofs. In order to achieve this, formulas must 
be expressed as numbers, in a process called arithmetization. The Gödel 
number of any formula (or term) φ will mean a natural number constructed 
according to appropriate rules, and will be denoted by  φ  . The knowledge 
of Gödel numbers allows us to express all relations between formulas in terms 
of ordinary numerical relations. Moreover, thanks to the possibility of en-
coding finite sequences of numbers of any length belonging to ℕ by single 
natural numbers, we can also effectively represent sequences of PA expressions 
(formulas or terms).

As can be easily seen, by applying the Gödel numbering method and relying 
on the possibility of defining various auxiliary recursive relations, two very 
important predicates can be defined:

• Pr (u, υ) – signifies whether u is a code for a sequence of formulas (which can 
be reconstructed from the value of u), that form a proof in PA of the formula υ;

• Th (υ) – checks whether the formula signified by the number υ is a PA 
theorem; Th can be defined with Pr as follows:

Th (υ) ≡ ∃u Pr (u, υ) 
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It should be noted that the  relation, due to the use of the unbounded quantifier, 
is not a recursive relation. Our considerations will concern situations in which 
a theory will satisfy a rather basic condition of consistency. We can formulate 
it precisely in the following way: any theory T will be called consistent if and 
only if for any formula φ, T− φ and T− ¬φ do not occur simultaneously. 
Every consistent theory has a model.

Now we can state one of the most important results in the field of the foun-
dations of mathematics: Gödel’s theorem on the incompleteness of Peano 
arithmetic, documenting the lack of a complete match between the concepts 
of true formulas and formulas having a proof (theorems). As it turns out, within 
Peano arithmetic there is a formula that cannot be either proved or denied 
(that is, its negation cannot be proved).

Theorem 3.2 (Gödel’s theorem (with Rosser’s modification17)). If PA arith­
metic is consistent, then there exists a sentence formula χ such that PA− ⁄  χ  
and PA− ⁄   ¬χ.

The above theorem reveals an extremely important fact. There are sentences 
describing arithmetical (that is, in a certain sense simple – based on addition 
and multiplication) properties of numbers, which cannot be proved, but also 
cannot be rejected by the proof of their negation. Since they are sentences 
with well-defined meaning, they have logical value (they are true or false 
in the standard model N). From this follows the conclusion that some true 
sentences (either χ or ¬χ in the theorem) do not have a proof. A particularly 
important example of this theorem is the consistency problem: whether it is 
possible within PA to construct a proof of the fact that PA is a consistent 
theory. Taking the formula φ ≡ ¬∃y Pr (y, 0 = 1) as a representation of the 
consistency problem, it turns out that within PA such a formula φ has no proof 
(i.e., it cannot be shown that there is no proof of a false sentence stating the 
equality of 0 and 1)18.

The formulation of the theorem suggests posing the question – can we some-
how distinguish a class of such sentences of PA arithmetic which are true, and 
which with certainty have a proof. It turns out that such a result can be formu-
lated in an elegant way (Boolos 1995) by referring to the notion of formulas 

17 Gödel proved the theorem under the assumption of ω-consistency, which is a concept stronger 
than mere consistency. Rosser weakened the assumption of the theorem to mere consistency.

18 This is known as Gödel’s second theorem.
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of the ∑ 01 type, that is, formulas which in PA have a proof of equivalence with 
formulas having at their beginning a group of existential quantifiers, followed 
by a subformula built only from restricted quantifiers, conjunction, alternative, 
implication, equivalence, and negation, combining equalities of PA terms.

Theorem 3.3. If χ is a true sentence of ∑ 01 type, then PA arithmetic guarantees 
a proof χ: PA – χ.

Do we need Peano arithmetic’s theory to obtain this extremely important re-
sult about the incompleteness of mathematical theories? The answer depends 
on the adopted point of view. If the aim is the simplest possible theory, the 
means of proof of which are not sufficient to obtain a complete set of theo-
rems, then Robinson’s arithmetic (called Q arithmetic) may be used. It differs 
from PA theory only in the absence of an axiomatic scheme of induction. 
This absence, however, causes the possibility of matching the Q theory with 
non-standard models, which do not guarantee the occurrence even of simple 
properties. For example, in Q neither ∀x (0 + x = x) nor ¬∀x (0 + x = x) can 
be proved (cf. Smith 2007, 56).

For this reason, the Q theory does not appear to be particularly interest-
ing, since it is shown to have too weak a system of axioms to prove the basic 
properties of arithmetic. Therefore, we should return to PA, which, although 
fully expresses the basic facts of arithmetic, at the same time illustrates the 
insurmountable difficulties of adequately complex deductive systems.

An important feature of a theory is the ability to internally determine the 
truth of formulas:

• is it possible, within a theory, to define such a relation with one variable, 
which will be true only for arguments which are the numbers of the 
formulas of this theory that are true in the standard model (under the 
standard understanding of the non-logical symbols of the language)?

It turns out that PA arithmetic does not allow us to define such a truth 
relation.

Theorem 3.4 (Tarski’s theorem). If Peano arithmetic is consistent, then there 
is no formula Θ (x) of Peano arithmetic, such that ψ is true (under the natural 
understanding of non­logical symbols) if and only if the relation Θ (ψ) is true.

The formula Θ represents the truth predicate, so it should become a true for-
mula if and only if it speaks of a true argument. The argument representing 
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a formula ψ is its Gödel number ψ, which in PA arithmetic is written using 
the appropriate numeral ψ.

There remains one more area left, connecting the field of computability 
and the PA arithmetic theory. Since formulas can be represented by natural 
numbers, the question presents itself: can one algorithmically detect among 
formulas’ numbers those, which are the numbers of theorems. Such a question 
leads to the following definitions. We call a formal theory decidable if the set 
of Gödel’s numbers of its theorems is a recursive set. We call a formal theory 
undecidable if it is not decidable. It turns out that PA arithmetic unfortunately 
does not allow the algorithmic detection of theorems.

Theorem 3.5.  If PA arithmetic theory is  consistent, then PA  theory is also 
undecidable.

Every algorithmic model (not only partial recursive functions, but also register 
machines, λ-calculus, Post machines, etc.), leads to the same metamathematical 
results. This situation is one of the motivations behind adopting Church’s The-
sis, a statement that restricts effective computability to the functions within the 
PREC set.19 However, it also provides motivation for considering the problem: 
how would the provability possibilities of PA arithmetic (or other mathematical 
theories) change, if it became possible to introduce a function that is effectively 
computable but does not fall into the class of partial recursive functions?20

As can be seen from the above, computability depends on the essence of the 
notion of proof. Once it is accepted that a theory must guarantee the possi-
bility of a formal proof, the notion of effective transformation determines 
permissible ways of constructing a set of axioms and the permissible form 
(structure?) of the rules of inference. The question of what an effective activity 
is, therefore, defines the structure of the development of mathematics, based 
on formalizable theories.

4. Computable and non-recursive extensions of arithmetic

Let us now imagine a situation in which we have a certain function f∆ which 
does not belong to the PREC class, but which has the property of effective 

19 A discussion of some variants and consequences of Church’s Thesis can be found in (Odifreddi 
1989), (Olszewski 2009), (Copeland 2020)

20 This question can also be taken as the primary question of the entire article.
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and efficient computability, and which would be a numerical function defined 
in natural numbers. The existence of such a function is guaranteed by general 
considerations of the set theory concerning cardinal numbers of sets of map-
pings. Let us associate with this function a new function symbol ∆, corre-
sponding to the unary function and having the property that for any argument 
(formally given by the numeral x–) we may determine the value of y–, such 
that in PA it always holds as an axiom that y– = ∆ (x–) if and only if y = f∆ (x)  
(cf. Odifreddi 1989, 1:159–62).

We may now pose the question: what happens to the set of theorems of  PA∆ 

theory, that is, PA theory extended by the set of all possible axioms built for 
consecutive numbers n ∈ ℕ according to the formula y–n = ∆ (n–). That the set 
of theorems will expand, due to the new function symbol and new axioms 
is indubitable. The question that interests us, however, is whether it is possible 
within PA∆ to obtain new theorems that are formulas without the symbol ∆, 
or whether any new theorems will be ones involving the symbol ∆. In techni-
cal terms, we ask whether PA∆ is a conservative extension of PA? The answer 
to this question is (somewhat surprisingly) affirmative.

Theorem 4.1. If PA is consistent, then PA∆ is a conservative extension of PA.

Proof. Let us consider a certain formula φ, which is a PA∆ theorem: PA∆ – φ.  
Since PA is – by assumption – a consistent theory, it has a model. Let us con-
sider any model M of all theorems of PA. We may extend it to a model M’, 
in which we include a function  f∆ : M’ = M ∪ {f∆}.

It is easy to see that if PA∆ – φ then M’= φ. If the formula φ does not con-
tain the symbol ∆, the actual model of this formula is M: M= φ. Since M was 
chosen to be any model of PA, it turns out that also PA – φ. □

We can also justify the above theorem by analyzing the structure of possible 
proofs within PA∆. Consider a formula φ having a proof in PA∆ : PA∆ – φ. This 
proof is nothing else than a finite sequence of formulas φ1,…, φn = φ, satisfy-
ing certain conditions (they are either axioms or they follow from previous 
elements of the sequence according to certain inference rules). In this se-
quence, appeals to ∆ can only occur a finite number of times – so let us choose 
those formulas φi in which the symbol ∆ occurs, and let us create their con-
junction denoted as Φ∆. If we add Φ∆ as assumptions to PA, then of course  
PA ∪ Φ∆ – φ. What is  the status of  the formulas from the set Φ∆? Their 
main determinant is  the occurrence of  the symbol ∆  –  it appears ei-
ther in relation to specific numerical values (e.g. ∆ (n−) = m−), or in relation 
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to general expressions based on finite number of values of the function ∆ (e.g.  
∀x[(x < 5) → ∆ (x) > 10]), or in relation to expressions in which properties  
of ∆ do not have actual significance (e.g. ∀x[S (∆ (x)) > ∆ (x)). If we define 
a function h∆, which, on the initial segment of natural numbers used as argu-
ments of ∆ in  Φ∆ will return the same values as ∆ (that is, for some k we have 
∀ (x < k) [h∆ (x) = ∆ (x)]), and outside of it will return zero, then we obtain 
a recursive function, i.e. one definable in PA. As can be easily seen, replacing 
in formulas of Φ∆ the symbol ∆ with such a function h∆ does not in any way 
disturb the proof of φ, but at the same time will cause the formulas of the proof 
not to extend beyond the pure PA theory. Hence, we obtain the conclusion that  
also PA – φ.21

The above theorem has important consequences.

Theorem 4.2. If PA is consistent, then also PA∆ theory is consistent.

Proof. Let us assume that PA∆ is contradictory – then every pair of formulas  
φ and ¬φ has a proof in PA∆. However – due to the conservativeness of PA∆ – 
formulas φ and ¬φ, which do not contain the ∆ symbol have a proof in PA. 
Hence, PA would also be contradictory (contrary to the assumption). By vir-
tue of reductio ad absurdum reasoning we therefore obtain the consistency  
of PA∆. □

Theorem 4.3. If PA is consistent, then also the set (of indices) of theorems of PA∆ 
theory is not a recursive set.

Proof. If the set (of indices) of theorems of PA∆ theory was to be recursive, then 
there would exist a characteristic function χ PA∆ belonging to the set of recursive 
functions, which would distinguish the theorems of PA∆. Since PA∆ is a con-
servative extension of PA, then checking whether a formula is a theorem 
of PA∆ and is written in the language of PA, would produce a recursive test 
for having a proof in PA. Thus PA would be decidable, which contradicts the 
results referenced earlier – hence, by virtue of reductio ad absurdum, we obtain 
the theorem. □

21 The accurate conduction of this reasoning would require explicit clarification of the rules 
of inference, and performing a reverse analysis showing that if the proved theorem does not 
contain  ∆, then also in the formulas employed in the proof ∆ does not have to occur.
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Using the ∆ symbol we can define a formula φ of PA∆, which corresponds 
to the function f∆: φ (x, y) ≡ ∆ (x) = y (which signifies the weak representability 
of the function f∆ in PA∆).

As the above results show, adding a nonrecursive function, although ef-
fectively computable in the intuitive sense will not add anything new to the 
deductive power of PA theory in terms of theorems concerning arithmetic. 
If the included function is not effectively computable, we still do not obtain 
a proper extension of PA.

It must be noted that modifying a theory by extending its syntactic apparatus 
(i.e., by adding new expressions that specify values of some special functions) 
is not sufficient. Such a ‘black box’ does not add anything substantially new 
to the deductive power of the theory. Only when this it is somehow integrated 
into the entire theory by a human (semantic) insight, translated as an appro-
priate expression, truly new consequences can be obtained.

5. Extensions of arithmetic with a given interpretation

We could, however, add a new function (or a relation) to PA∆, with a certain spe-
cific reference of its values to the system of formulas (that is, the indices of for-
mulas) in PA∆. In other words, we would introduce an axiom that binds our new 
function symbol ∆ with the formulas of PA∆. In this way we would obtain some 
kind of an internal (relative to PA∆) interpretation of the meaning of the func-
tion f∆. PA +

∆ obtained in this way, may not be conservative with respect to PA.
Let us consider an example of the above statement. We begin by using a spe-

cific partial recursive function U (x, y), which satisfies the following conditions:
• for each fixed x ∈ ℕ a unary function g (y) = U (x, y) is a partial recursive 

function;
• for each partial recursive function f (y) ∈ PREC there exists its index  

x ∈ ℕ such that for each argument y from the set of natural numbers 
either U (x, y) = f (y), or the functions on either side of the equals sign 
are undefined.

Such a function U is called the universal function for the PREC set. An im-
portant property of the universal function U for PREC is that the function 
U itself is also a partial recursive function (it belongs to PREC), so it is repre-
sented in PA arithmetic.

Let us now define a relation R (x, y) as follows:

R (x, y) ≡ ∀s∃tU (x, s) = t ∧ ∀s∃tU (y, s) = t ∧ ∀sU (x, s) = U (y, s).
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The relation R states that numbers x ∈ ℕ and y ∈ ℕ are two indices of the 
same recursive function.

Theorem 5.1. There exist such values x₀, y₀ for which there is in PA no proof  
of R (x₀, y₀) and no proof of ¬ R (x₀, y₀).

Proof. Let us negate the thesis and analyze consequences of the certainty that 
for every value either R (x₀, y₀) or ¬R (x₀, y₀) can be proved. For any partial 
recursive function f : ℕ → ℕ with the index xf, then, one can calculate the index 
x₀ of the composition Z (f (x)), and then using the index y₀ of the function Z de-
termine – through a computable process of generating all subsequent proofs 
in PA – whether R (x₀, y₀) or ¬R (x₀, y₀) holds. This would allow to recursively 
examine the totality of the function f. However, classical results of computa-
bility theory22 indicate that there is no recursive function testing the totality 
of a function of PREC. Hence, we obtain the necessity of the existence of such 
x₀, y₀ for which PA–⁄  R (x₀, y₀) and PA–⁄  R (x₀, y₀). □

Let us now introduce a function symbol ∆' representing the function f∆'  de-
scribed as follows:

• f∆'  (x) = y+1 when the partial recursive function with index x is a total 
function and y is the smallest index of the function that is extensively 
identical to the function with index x;

• f∆'  (x) = 0 when a partial recursive function with index x is not total.
The function described above is not a partial recursive function (using it one 

can solve the unsolvable halting problem). However, it is conceivable that 
it is in some way intuitively computable, which would allow us to extent the 
axioms of PA with an infinite sequence of equations ∆' (n–) = m–, one for each 
value of n ∈ ℕ. The assumption, which we adopted, that the above function 
is effectively computable in the intuitive sense, implies that the halting problem 
can be decidable when adopting the notion of computability as we have just 
extended it (and still remain undecidable with respect to the classical notion 
of computability).

Using the function symbol ∆' of this function, we can define a new relation 
in PA∆' arithmetic, of the form: R' (x, y) ≡ ∆' (x) ≠ 0 ∧ ∆' (y) ≠ 0 ∧ ∆' (x) = 
∆' (y). This describes a relation the meaning of which is based on the mean-
ing of the function f∆: x and y satisfy R' if and only if they are indices of the 

22 This is a special case of Rice’s theorem; cf. (Rogers 1987, 36:34).
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same (in the extensional sense) total recursive function. However, without 
further clarifications, the relation R' defines within the new theory only a cer-
tain relationship between numbers, which is associated with the symbol ∆',  
that has no specific meaning or use, other than to determine the value of  
∆' (n–) = m–. Let us consider the situation that arises when we add the axiom  
R (x, y) ⇔ R' (x, y). Within the theory extended in this way, there appeared 
a tool which binds the symbol ∆' with concepts that can be analyzed within 
the theory itself. We thus have an internal interpretation of the meaning of ∆'.  
On the other hand, we can treat this axiom as a rule of the use of ∆' in proofs. 
It turns out that in this new theory we will obtain new theorems.

Theorem 5.2. For any values of x₀, y₀, within the extended theory PA∆' there 
exists either a proof of R (x₀, y₀) or a proof of ¬R (x₀, y₀).

Proof. We need to calculate ∆' (x₀) and ∆' (y₀) for the given values of x₀, y₀; then 
the calculated values will be used in determining the logical value of R' (x₀, 
y₀). In the final step it is sufficient to employ the axiom of equivalence of the 
relations R and R' to obtain the proof of R (x₀, y₀) or of ¬R (x₀, y₀). □

The above theorem shows that after choosing a suitable non-recursive function 
(effectively computable in the intuitive sense) and adding an axiom inter-
preting the meaning of this function, one can obtain an extension that is not 
conservative.

Let us try to use the reasoning given above to extend the deductive possibili-
ties. For this purpose, we will use the result concerning formulas of the class ∑ 03, 
that is, formulas equivalent to the formulas beginning with a sequence of an 
existential quantifier, a universal quantifier, and again an existential quanti-
fier (∃∀∃), followed by a subformula built only from restricted quantifiers, 
conjunction, alternative, implication, equivalence, and negation, combining 
equalities of PA terms.

Let us also introduce an extension (PA+) of Peano arithmetic by adding to the 
set of axioms another axiom ∀xP (x) for any predicate P such that for every 
number n ∈ ℕ is PA– P (n) by the usual means of proof.

Instead of extending the set of axioms, we can transfer a similar idea of ex-
tension to the realm of the rules of inference. Then we can supplement the 
arithmetic with an ω-rule:

• if P (n) can be proved for any n ∈ ℕ by classical methods of proof (without 
the ω-rule) then we can deduce (consider as proved) the sentence ∀xP (x).
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As it turns out, the approach of axiomatic extension and the addition of a new 
unconventional inference method are equivalent.

Theorem 5.3. Sentence φ can be proven in arithmetic supplemented with the 
ω­rule if and only if PA+– φ.

The above modification of arithmetic has an interesting connection with de-
ductive possibilities (completeness) for sentences of the ∑ 03 class. As Boolos 
(1995, 191) states every true ∑ 03 formula is provable when using the ω-rule. 
Hence we obtain the theorem.

Theorem 5.4. If χ is a true sentence of type ∑ 03, then PA+ arithmetic guarantees 
a proof of χ : PA+ – χ.

Let us now note that the problem of the ω-rule can be transformed into one 
connected with the halting problem and the set K0 corresponding to it. In the 
case of any recursive function there arises the problem of checking which 
numbers belong to its domain – or, in a language closer to computer science, 
for which numerical arguments the function (or rather the algorithm im-
plementing it) will complete its computation and produce a result. In more 
technical terms, it is the problem of checking whether the function with in-
dex k is defined for the argument n: U (k, n) ↓?  This problem, called the 
halting problem, is associated with a numerical set K0, which contains all 
and only these pairs, for which the halting problem has a positive solution:  
K0 = {〈x, y〉 : U (x, y) ↓}. The set K0 is undecidable, that is, the characteristic func-
tion χ(K0) such that χ(K0) (〈x, y〉) = 1 if and only if 〈x, y〉 ∈ K0  and χ(K0) (〈x, y〉) = 0  
if and only if 〈x, y〉 ∉ K0 is not a recursive function. Let us analyze the inclusion 
of this function as effectively computable (though non-recursive) in the set 
of axioms of PA.

The method of constructing the new theory T makes it possible to gen-
erate successive theorems (and so also their codes). We can, therefore, in-
troduce to our considerations a computable function FPA (n), which gener-
ates the code of the n-th theorem of T. On its basis it is possible to define 
a partial recursive function χPA (i) = µy [FPA (y) = i], where i = ψ is the in-
dex of some sentence ψ. As can be easily seen, the function χPA is defined 
when its argument is an index of some theorem, otherwise it is undefined. 
Can it therefore be transformed in such a way that results in an always de-
fined characteristic function of the set (of indices) of theorems? We can use 
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for this purpose the set K0, which checks whether partial recursive func-
tions are defined or not for given arguments. This allows us to introduce  
a function:

χ (P, k) = χ(K₀) (〈χPA, P (k)〉),

which will equal one if and only if P (k) is a theorem, and equal zero if and 
only if P (k) is not a theorem. If we now add a function testing the relation P 
in a certain initial segment:

χ' (P, n) =  
n

Π
k=0

 χ(K₀) (〈χPA, P (k)〉),

and look for the smallest value y, such that P (y) has no proof:

ρ (P) = µy [χ' (P, n) = 0]

we will then obtain a recursive function ρ, such that ρ (P) is defined if and 
only if there exists some k such that T does not prove P (k) and ρ (P) is unde-
fined if and only if for every k the theory proves P (k). The problem of proving 
∀xP (x) transforms into the question of checking whether a recursive function 
is defined. Therefore, once we have defined:

ρ∀ (P) = χ(K₀) (〈ρ, P〉)

we obtain a  test for ∀xP (x) based on  the properties of  the particular 
P (k) : ρ∀ (P) = 1 if and only if for each k the arithmetic proves P (k), which 
allows us to introduce an effective rule of inference that, based on the function  
ρ∀ (P) decides whether ∀xP (x).

In this way, the extension by a sequence of axioms describing the character-
istic function K0, extends the theory giving it possibilities corresponding to the 
ω-rule. This means that such a theory, together with the binding the function 
ρ∀ with universal quantifier becomes a ∑ 03-complete theory.

An additional consequence is the decidability within the theory of all the 
theorems of that theory.

Theorem 5.5. There exists a formula ρ of T, such that ρ (χ) has a proof in this 
theory if and only if χ is a PA theorem; otherwise there exists within our theory 
a proof of ¬ρ (χ).
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An illustration of the above results can be made by reference to Goldbach’s 
hypothesis. Euler’s formulation of this hypothesis, which reads: every even 
number greater than 2 is the sum of two prime numbers, can be represented 
in symbolic form as:

∀n > 1∃p1∃p2 [2n = p1 + p2 ∧ Prime (p1) ∧ Prime (p2)].

Since Prime (p) is a recursive relation, the whole above sentence belongs 
to the ∏02 class, which is contained within ∑ 03. Hence, if Goldbach’s hypothesis 
is true, we can be sure that there exists its proof within our theory.

The above considerations guarantee that the introduction of the charac-
teristic function of the set K as an additional axiom allows us to simulate 
a finite ω-rule (i.e. ω-rule applied to a formula ϕ (x) such that all instances ϕ (k–) 
can be proved without ω-rule). However, including a new function, allows 
us to define new functions which K is not able to check. This reasoning leads 
to a classic sequence, generated by the jump operation: K = ϕ', K' = ϕ'', etc. 
A detailed analysis shows that a sufficiently deeply nested ω-rule (see Boolos 
1995) allows to strengthen the deductive power of PA to true sentences of any 
chosen  ∑ 0

n level. On the other hand, the truth-predicate for ∑ 0
n level also allow 

to strengthen the deductive power of PA to all true sentences of type ∑ 0
n. Such 

predicate is also ∑ 0
n formula which allows us to reduce it to the corresponding 

jump ϕn.
In this way, we discover the adequacy of two methods for strengthening the 

proof power of the theory of arithmetic:
• by new axioms for some non-recursive functions (i.e., the characteristic 

function of ϕn);
• by new rules of inference (i.e., the nested finite ω-rule).
The ω-rule can be replaced by a function, the values of which will con-

tain predictions of the course of a certain nonhomogeneous infinite process. 
In the ω-rule we have the possibility of using proofs of a predicate P (i), which 
holds for each i, but each of these proofs might be significantly differ from 
the others, and there need not be a common scheme for carrying out the 
proof of P (x). This might suggest that perhaps such a description of schemes 
in current mathematics is not sufficient, and one could achieve uniformity 
of proof by introducing new (effective but not recursive) means. Perhaps this 
is not the case, and there is no such possibility of conceptually improving the 
notion of effectiveness, but there do exist natural processes which, while acting 
according to unknown to us principles, but with known effects, capture the 
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behaviour of heterogeneous processes and can extend (in a sense, experimen-
tally) the power of deductive systems, as a kind of additional ’black boxes’ with 
instructions, explaining how to utilize their results. Perhaps the human nature 
hides an ability to handle uniformly nonhomogeneous processes.

Concluding remarks

The results presented above show that by attaching a mechanism, allowing 
to efficiently compute the values of a certain non-recursive function to the 
set of PA axioms, we cannot obtain proofs of new theorems. Only with the 
introduction of the axiom linking a formula definable in PA with the values 
of a function, we are able to extend the deductive power of the theory. This 
may inspire proposing an analogy with Löb’s theorem (cf. Boolos 1995, 54–59), 
which states that in PA arithmetic having a proof of the formula Bew (ρ) → ρ  
is equivalent to having a proof of ρ. (where Bew denotes an expression stating the 
existence of a proof of a formula with the given index). The Bew formula is recur-
sively definable in PA, and therefore the analysis of provability can be associated with 
actual proofs, and, in this context, formulas’ indices with the formulas themselves.

This leads us to note the need of adding axioms for the properties which 
do not have a recursive definition in PA. The role of such an axiom is to con-
nect a non-recursive property P with a function that will verify the existence 
of this property:

χP (ρ) → ρ has the property P,

where the occurrence of a property can be somehow (though not recursively) 
defined in PA arithmetic. Such an approach would suggest that various ex-
tensions of PA would take place in a way similar to the implication of Löb’s 
theorem, but due to the non-recursive character of the considered properties 
(which distinguishes them from Löb’s theorem’s Bew), these extensions require 
including the values of a function which may be effectively designated, but 
it has no recursive definition.

As can be seen from the above, what is of importance here is not only whether 
we have a certain computable and non-recursive function, but whether we are 
able to integrate (associate) it with classically computable functions. Without 
this integration we would only have a ’black box’, producing values the mean-
ing of which we cannot understand, and which we are unable to use in any 
proofs. In other words, we would have increased computational capabilities, 
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but without an increase in deductive capabilities – we would not therefore 
extend our knowledge with new theorems.

We now present some conclusions obtained from the present research.
The falsity of Church’s Thesis, as we understand it here, changes some results 

regarding the completeness of arithmetic. One needs to be able, however, to in-
tegrate the witness for the rejection of Church’s Thesis (i.e., a certain effectively 
computable but non-recursive function) into the arithmetic. In other words, 
it is not sufficient to present a computable non-recursive function – it needs 
to be integrated through a suitable axiom (interpreting for the arithmetic 
what the function signifies, what its semantics are), in order to get an increase 
in the deductive possibilities. Without such a ‘connection’, there is no signif-
icant difference for a system, in our case PA, between a function that is non- 

-recursive and effectively computable in the intuitive sense, and a function 
that is non-recursive and not effectively computable in the intuitive sense. 
The general properties of such a ‘connection’, a specific case of which was used 
in this paper, would be a matter for further studies.

In this context, the present paper reaffirms, by means of  strict results, 
Church’s intuition (cf. A.-D.) that an effectively computable non-recursive 
function could produce new means of proof.

It is also worth noting that in our understanding of CT, its formulation 
using the notion of an effectively computable – in the intuitive sense – func-
tion, presents, in a sense, a real characterization of the mind of human beings 
as homo sapiens. This notion can originate from the reflection of the mind 
on its own properties, that is, from self-awareness. Modifying the notion of an 
effectively computable function, as shown in the paper, results in changing 
mathematics, in the sense of changing the set of provable sentences. Thus CT, 
though not itself a mathematical sentence, has significant consequences for 
mathematics as such.

For it may turn out that in some today still unknown fully dimension or scale, 
the human mind can compute more than we currently think.
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Abstract
A consequence of the notional existence of an effectively 
calculable yet non-recursive function23

The present paper is devoted to a discussion of the role of Church’s thesis in setting 
limits to the cognitive possibilities of mathematics. The specific aim is to analyse the 
formalized theory of arithmetic as a fundamental mathematical structure related 
to the theory of computation. By introducing notional non-standard computational 
abilities into this theory, a non-trivial enlargement of the set of theorems is obtained. 
The paper also indicates the connection between the inclusion of new functions 
through the development of axioms and the potential modification of inference rules. 
In addition, the paper provides an explanation of the role of inclusion of a certain 
interpretation of the meaning of the axioms of the theory in that theory.
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