Modular structurality and emergent functionality within knowledge representation systems

Autor

  • Adam Fedyniuk

DOI:

https://doi.org/10.15633/ss.1769

Słowa kluczowe:

metamodelling, ontology, proteomics, connectomics, centrality, philosophy of information

Abstrakt

There are various approaches to ontology metamodelling, and the notion of biologically inspired modular knowledge representation systems can provide insight in the workings of such phenomena as emergent properties of network structures. What is more relevant from knowledge engineering standpoint, such approach could provide innovation and enhancement of the level of expression as well as overall functionality of modular ontologies. To do so, one needs to find biological structures that would be the basis for modularity on different levels of hierarchy within the artificial system. Network analysis tools as well as systems biology and biocomputing provide a framework for research in this field.

Biogram autora

  • Adam Fedyniuk
    Adam Fedyniuk – doktorant w Zakładzie Kognitywistyki i Epistemologii na Uniwersytecie Mikołaja Kopernika w Toruniu. Jego zainteresowania badawcze to transdyscyplinarne aspekty inżynierii wiedzy.

Bibliografia

Azam F., Biologically inspired modular neural networks, Blacksburg, VA 2000.

Behrens E. J., Sporns O., Human connectomics, “Current Opinion in Neurobiology” 22 (2011) 1, pp. 144–153.

Carruthers P., The architecture of mind, Oxford 2006

Cheng F. and others, Quantitative network mapping of the human kinome interactome reveals new clues for rational kinase inhibitor discovery and individualized cancer therapy, “Oncotarget” 15 (2014), p. 3697–3710, doi: 10.18632/oncotarget.1984.

Cornelis H., Coop A. D., Bower J. M., A federated design for a neurobiological simulation engine: the CBI Federated Software Architecture, “PloS One” (2012) 7 (1), doi: http://dx.doi.org/10.1371/journal.pone.0028956

Cornelis H. and others, Python as federation tool for GENESIS 3.0., “PloS One” (2012) 7 (1), doi: vhttp://dx.doi.org/10.1371/journal.pone.0029018.

Godwin D., Barry R. L., Marois R., Breakdown of the brain’s functional network modularity with awareness. “Proceedings of the National ­Academy of Sciences of USA” 112 (2015) 12, pp. 3799–3804, doi: 10.1073/pnas.1414466112.

Hagmann P., and others, Mapping the structural core of cerebral cortex, “PloS Biology” 6 (2008), doi: http://dx.doi.org/10.1371/journal.pbio.0060159.

Kennedy J., Eberhart R., Particle swarm optimization, Piscataway, NJ. 1995.

Kollia I. and others, Interweaving knowledge representation and adaptive neural networks, “Workshop on Inductive Reasoning and Machine Learning on the Semantic Web” (2009) 12, pp. 1–4.

Peng Y., Ontology mapping neural network: an approach to learning and inferring correspondences among ontologies, Pittsburgh 2010.

Roche C., Network analysis of Semantic Web Ontologies, Stanford CS224W: Social and Information Network Analysis 2011.

Zuo X. N., R and others, Network centrality in the human functional connectome, “Cerebral Cortex” 22 (2012) pp. 1862–1875, doi: 10.1093/cercor/bhr269.

Opublikowane

2016-09-20

Numer

Dział

Artykuły